15 de noviembre de 2024
RRHHDigital - El periódico online referente en Recursos Humanos

Tips para evitar el fracaso de los proyectos de Inteligencia Artificial

Tips para evitar el fracaso de los proyectos de Inteligencia Artificial

Francisco Díaz, business analyst en Compensa Capital Humano, del grupo Howden, recomienda buscar un promotor interno para el proyecto, colaborar con los responsables de data, realizar una selección óptima de las iniciativas de Machine Learning, confeccionar un acta de constitución del proyecto, seleccionar un equipo con los perfiles adecuados, involucrar a los stakeholders y mantener un seguimiento constante

La digitalización es uno de los ejes prioritarios de las estrategias empresariales tanto en la actualidad como para los próximos años. También lo es para el Gobierno de España, que ha establecido en la ‘Agenda España Digital 2025’ unos objetivos de competencias digitales con el foco tanto en la sociedad como en las pymes.

Una de las herramientas con las que cuentan las empresas es la Inteligencia Artificial. Según datos de la consultora Gartner, en el año 2025 la AI liderará la inversión tecnológica de estas. Sin embargo, estos proyectos de Inteligencia Artificial todavía no son exitosos, ya que, como indicaba el psicólogo y profesor de la Universidad de Harvard Howard Gardner, el 85% de ellos fracasan.

Ante esta circunstancia, Francisco Díaz, business analyst en Compensa Capital Humano, del grupo Howden, aporta siete recomendaciones para conseguir que la Inteligencia Artificial se implemente de manera eficaz en las empresas:

1. Buscar un promotor interno para el proyecto

Una de las causas principales de fracaso en los proyectos de AI es la falta de soporte y liderazgo. Las iniciativas en este campo son muy atractivas, pero sus probabilidades de fracaso son altas. Por ello, es deseable crear un prototipo que ilustre el concepto, sin necesidad de emplear todos los recursos, y ayude a vislumbrar sus resultados.

2. Colaboración en la data

La Inteligencia Artificial se basa en la data y, en mayor o menor medida, la empresa tendrá personas o grupos que manejen información necesaria para el proyecto. Por lo que tiene que haber alguien en disposición de pedirles esta información. La falta de colaboración es otra de las causas de fracaso más frecuentes y se manifestará también en la reticencia a asignar recursos al proyecto para una gran variedad de tareas a ejecutar fuera del desarrollo en sí.

3. Selección óptima de las iniciativas de Machine Learning

Un proyecto de estas características requiere de una inversión en recursos, que necesitarán estar bien planificados para justificar su coste. En la propuesta es preferible centrarse en la problemática de negocio que resuelven en vez de en las características tecnológicas. Además, deberá incluir un ROI (retorno de la inversión) aproximado, el tiempo de comercialización de la idea, el esfuerzo estimado y los escollos que habrá que salvar. Sin olvidar un análisis de viabilidad técnica.

4. Confeccionar un acta de constitución del proyecto (Project chárter)

La definición del proyecto y de sus requerimientos es trascendental para poder empezar el desarrollo del mismo. Este project chárter debe conocer el alcance del proyecto, qué queremos construir y los objetivos de negocio. 

5. Composición del equipo

Para evitar la falta de experiencia y la desconexión entre desarrollo de software y ciencia de datos hay que definir los perfiles necesarios. Necesitaremos un especialista en data science, pero también un ingeniero de datos (data engineer) con conocimientos de IT y programación más tradicional. Es esencial que intervengan en el equipo expertos de negocio para que puedan ir realizando un seguimiento de los resultados.

No necesariamente tendrán que ser incorporados externamente, muchas veces ya existen recursos en la propia empresa o posibilidades de formación más adecuados.

6. Involucrar a stakeholders

En la vida útil del proyecto, se van a dar interacciones con una gran variedad de profesionales y proveedores que se deben de gestionar adecuadamente. Hay que ser conscientes también de las reticencias que puede ocasionar la AI como sustituto de tareas que actualmente realizan.

7. Un seguimiento constante

Los problemas no pueden surgir únicamente en la implantación del proyecto, sino que es necesario prestar atención a cómo ejecutar lo que hemos dibujado. Las posibilidades de la inteligencia artificial son infinitas, por lo que es recomendable mantener un alcance conservador e instaurar fases de desarrollo. Además, hay que tener en mente que los proyectos de AI tienen un componente de desarrollo de software, pero que también es importante escoger el método de gestión adecuado.

Por último, y aparte de las anteriores recomendaciones, Francisco Díaz explica que el conjunto de tecnologías y algoritmos que podemos elegir para implementar nuestras soluciones es muy amplio. “Es importante escoger soluciones simples y transparentes, y, sobre todo, que sea fácil de explicar su funcionamiento interno”, concluye.

NOTICIAS RELACIONADAS

DEJA UNA RESPUESTA

Los comentarios están cerrados.

Los lectores opinan

¿Cuál es el mayor desafío para abordar la salud mental en el entorno laboral?

Ver los resultados

Cargando ... Cargando ...
Lo más leído

Regístrate en el boletín de RRHHDigital

* indicates required
Opciones de Suscripción
En cumplimiento de lo dispuesto en el artículo 5 de la Ley Orgánica 15/1999, de 13 de diciembre, de Protección de Datos de Carácter Personal (en adelante, "LOPD"), EDICIONES DIGITALES SIGLO 21, SL., le informa de que los datos de carácter personal que nos ha proporcionado mediante la cumplimentación de cualquier formulario electrónico que aparece en nuestras Web Site, así como aquellos datos a los que EDICIONES DIGITALES SIGLO 21, SL. acceda como consecuencia de su navegación, de la consulta, solicitud o contratación de cualquier servicio o producto, o de cualquier transacción u operación realizada a través de las Webs de nuestro grupo editorial EDICIONES DIGITALES SIGLO 21, SL., serán recogidos en un fichero cuyo responsable es EDICIONES DIGITALES SIGLO 21, SL. provista de CIF B86103140 con domicilio a estos efectos en Calle Comandante Franco, 24 28016, Madrid. Con carácter general, los datos de carácter personal que nos proporcione serán utilizados para atender sus solicitudes de información, así como informarle sobre nuevas actividades, productos y servicios de EDICIONES DIGITALES SIGLO 21, SL. Aquí puede leer nuestro aviso legal y política de privacidad.
rrhhdigital